翻訳と辞書
Words near each other
・ Marchon Eyewear
・ Marchosias
・ Marchouch
・ Marchovelette
・ Marchreisenspitze
・ MARCHROMT30A edit 2b 96
・ Marchspitze
・ Marchtal Abbey
・ Marchtrenk
・ Marchubeh
・ Marchuiyeh
・ Marchuk
・ Marchula
・ Marchenko
・ Marchenko equation
Marchenko–Pastur distribution
・ Marcheno
・ Marchenoir
・ Marcheprime
・ Marcher dans le sable
・ Marcher Lord
・ Marcher Radio Group
・ Marchers of Valhalla
・ Marches Energy Agency
・ Marches of Neustria
・ Marches Way
・ Marches, Drôme
・ Marchesa (brand)
・ Marchesa (disambiguation)
・ Marchesa Casati (painting)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Marchenko–Pastur distribution : ウィキペディア英語版
Marchenko–Pastur distribution

In random matrix theory, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.
If X denotes a M\times N random matrix whose entries are independent identically distributed random variables with mean 0 and variance \sigma^2 < \infty, let
: Y_N = N^ X X^T \,
and let \lambda_1,\, \lambda_2, \,\dots,\, \lambda_M be the eigenvalues of Y_N (viewed as random variables). Finally, consider the random measure
: \mu_M (A) = \frac \# \left\, \quad A \subset \mathbb.
Theorem. Assume that M,\,N \,\to\, \infty so that the ratio M/N \,\to\, \lambda \in (0, +\infty). Then \mu_ \,\to\, \mu (in weak
* topology
in distribution), where
: \mu(A) =\begin (1-\frac) \mathbf_ + \nu(A),& \text \lambda >1\\
\nu(A),& \text 0\leq \lambda \leq 1,
\end

and
: d\nu(x) = \frac \frac)}} \,\mathbf_,">\lambda_ )}\, dx
with
: \lambda_ = \sigma^2(1 \pm \sqrt)^2. \,
The Marchenko–Pastur law also arises as the free Poisson law in free probability theory, having rate 1/\lambda and jump size \sigma^2.
==See also ==

* Wigner semicircle distribution

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Marchenko–Pastur distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.